
Towards Object-aware Process Support in Healthcare Information Systems

Carolina Ming Chiao, Vera Künzle, Manfred Reichert
Institute of Databases and Information Systems

Ulm University, Germany
Email: {carolina.chiao, vera.kuenzle, manfred.reichert}@uni-ulm.de

Abstract—The processes to be supported by healthcare
information systems are highly complex, and they produce
and consume a large amount of data. Besides, they require
a high degree of flexibility. Despite their widespread adoption
in industry, however, traditional process management systems
(PrMS) have not been broadly used in healthcare environments
so far. One major reason for this is the missing integration
of processes with business data; i.e., business objects (e.g.,
medical orders or reports) are usually outside the control
of a PrMS. By contrast, our PHILharmonicFlows framework
offers an object-aware process management approach, which
tightly integrates business objects and processes. In this paper,
we use this framework to support a breast cancer diagnosis
scenario. We discuss the lessons learned from this case study as
well as requirements from the healthcare domain that can be
effectively met by an object-aware process management system.

Keywords-Process Management, Object-aware Process Man-
agement, Data-driven Process Execution.

I. INTRODUCTION

Healthcare processes are characterized by their high com-
plexity and the large amount of data they have to manage [1],
[2]. The latter is usually represented through business objects
like medical orders, medical reports, laboratory reports, and
discharge letters. Since healthcare processes require the co-
operation among different organizational units and medical
disciplines [3], adequate process support is crucial. In this
context, process management systems (PrMS) are typically
the first choice for implementing process-aware information
systems. However, despite their widespread adoption in
industry, existing PrMS are not broadly used in healthcare
environments [4]. One major reason for this deficiency is
that contemporary PrMS are activity-driven. The processes
are modeled in terms of “black-box” activities and their
control-flow defines the order and constraints for executing
these activities. However, activity-centric process modeling
approaches like BPMN [5] or BPEL [6] present numerous
limitations [29]: business data is typically treated as second-
class citizen [7], [11]. For example, most PrMS only cover
atomic data elements, which are needed for control flow
routing and for supplying the input parameters of activities
[8]. Business objects, in turn, are usually stored in external
databases and are outside the control of the PrMS. Hence,
integrated access to data and processes as crucial in the
healthcare domain is missing; i.e., PrMS are unable to

provide immediate access to important process information
in case of unexpected events [26].

Regarding the execution of activity-driven PrMS, a pro-
cess requires a number of activities to be completed in
order to terminate successfully. Healthcare processes and
their steps, in turn, depend on the availability of certain
information [3]. For example, if a patient has a tempera-
ture of above 38,5oC, the doctor may have to prescribe a
medicine to contain the fever. Consequently, the activation
of an activity does not directly depend on the completion of
other activities, but rather on the changes of business object
attributes.

Typically, it is also not possible to squeeze processes
from the healthcare domain into one monolithic process
model [1]. In healthcare environments, there exists numer-
ous processes depending on each other. For example, the
distribution of a medicine in the hospital pharmacy may
depend on the patient’s treatment process which, in turn,
may depend on his diagnosis process. The latter comprises
diagnostic processes like blood tests and image examinations
(or imaging encounters). To be applicable in a healthcare
context, therefore, a PrMS must provide mechanisms for
coordinating the interactions between interdependent pro-
cesses.

Another challenge arises from the fact that activities are
not only executed in the context of single process instances.
Instead, they may be invoked at different levels of granularity
comprising several process instances (of the same and of
different type). A medical doctor, for instance, may examine
one patient at a time, while a nurse prepares medications
for several patients in one go. Finally, healthcare processes
are highly dependent on medical knowledge as well as on
specific case decisions [3], [25]. Thus, the type and order of
invoked activities may vary from process instance to process
instance. For this reason, healthcare processes cannot be
“straight-jacketed” into a set of pre-defined activities [11],
[24].

Generally, the described limitations of existing PrMS can
be traced back to the missing integration of processes and
data [28], [29]. To overcome these limitations, several ap-
proaches have already pioneered concepts for enabling data-
driven process execution [11]–[13], [16], [17], [20], data-
driven exception handling and process adaptation [17], [18],
process coordination [9], [16], integrated access to data [11],



and process definition based on data behavior [14], [20].
However, none of them considers all identified limitations
in a comprehensive and integrated way. In addition, some
of these approaches do not make a difference between the
modeling and execution of a process; i.e., they provide rich
capabilities for process modeling, but do not explicitly take
runtime issues into account.

Opposed to these approaches, PHILharmonicFlows targets
at a comprehensive framework addressing the described
limitations [28]. In addition, PHILharmonicFlows enforces
a well-defined modeling methodology governing the object-
centric specification of processes and being based on a
formal operational semantics [30]. In this paper, we eval-
uate the applicability of PHILharmonicFlows framework
to healthcare processes. To limit the scope, we focus on
modeling issues in this paper. For this purpose, we present
a breast cancer diagnosis procedure as performed at a
Women’s hospital.

Section II describes the medical scenario considered as
well as the list of requirements to be supported by any PrMS
in order to be applicable in a healthcare environment. In
Section III, we model this scenario using the components
provided by PHILharmonicFlows. Following this, in Section
IV, we discuss how the requirements listed in Section II are
met by the framework. Related work is discussed in Section
V. Finally, Section VI concludes with a summary and an
outlook.

II. DESCRIPTION OF HEALTHCARE SCENARIO

The healthcare scenario we consider is a breast cancer
diagnosis process we obtained from a process handbook of
a Women’s hospital. As illustrated in Figure 1, this process
comprises anamnesis, a physical examination (including the
collection and confirmation of symptoms), a set of medical
examinations (e.g., MRI, mammography, blood analysis),
and a tumor biopsy. Some of these procedures are illustrated
in Figure 2. We describe the different procedures using
state charts. The latter are typically considered as intuitive
modeling paradigm providing a natural view for end users
[15].

Anamnesis

Symptom

0…*

Mammo-
graphy

Blood 
Analysis

Tumor 
Biopsy

MRI

Diagnosis

0…*0…*0…*1

1…*

Patient 
Examination

1

MRI Image Mammo-
graphy Image

1…* 1…*

Blood Test

1…*

Figure 1. Objects involved in the breast cancer diagnosis process

During anamnesis (cf. Fig. 2b) the physician asks the
patient specific questions (e.g., about her history of diseases,

Figure 2. State diagrams for diagnosis, anamnesis, patient examination,
symptom, mammography, and breast MRI examinations

family diseases, or current medication). In the meanwhile,
the doctor examines the patient and interviews her about
the presence of any symptom (cf. Fig. 2d). The physician
also asks the patient about breast nodules and he performs
a physical examination in order to confirm or exclude the
symptoms (cf. Fig. 2c). If the symptoms brought up by the
patient are not confirmed during the physical examination,
the presence of the tumor will be denied (cf. Fig. 2a). In
this case the diagnosis process is finished. Otherwise, the
doctor decides about a battery of examinations based on the
symptoms confirmed.

One of the examinations required to detect the presence
of a breast tumor or to exclude it is mammography (cf.
Figure 2e). To perform this examination, the secretary of the
radiology department must schedule it. At the day of the
appointment the procedure is performed and the resulting
images are stored in a database (cf. Figure 2f). The MRI
examination comprises a similar process shown in Figure 2g.
The images from both examinations are then analyzed by a
specialized physician of the radiology department and are
added to the respective medical reports. As opposed to the
mammography examination, for which the equipment does
not cause claustrophobia, during the MRI examination (cf. in
Fig. 2h) the patient may have a case of elevated anxiety due
to the enclosure of the MRI equipment. In such cases, the



radiology specialist being responsible for the examination
must decide whether or not the patient shall be sedated
before continuing with the procedure.

In the meanwhile, the doctor may request further ex-
aminations as, for example, another MRI examination or
additional blood tests. Otherwise, if the existence of a tumor
is confirmed, the doctor may want to biopsy this mass in
order to confirm the malignancy of the tumor (cf. Fig. 2a). In
this case, however, the consent of the patient is required. The
biopsy report is returned to the physician who will inform
the patient about the malignancy status of the tumor. Finally,
the diagnosis process is finished as positive, confirming the
presence of a breast tumor.

Though this diagnosis scenario seems to be rather simple,
it indicates a number of requirements to be supported
by the PrMS in order to be applicable to this healthcare
environment:
Req. 1 - Data and process integration: Our scenario is
composed of many procedures (e.g., anamnesis, searching
symptoms, mammography, and MRI). The product of each
of these procedures is data related to the patient’s diagnosis;
e.g., the data obtained when interviewing the patient in
the context of the anamnesis. Respective data is not only
important for keeping the patient’s history updated or for
registering all events for the purpose of auditing, they are
also vital for process execution. Milestones reached during
process execution do less depend on the execution of certain
activities, but more on the availability of certain data. For
example, a mammography medical report may only be writ-
ten after having captured and stored the respective images.
In addition, user decisions (typically based on available
data) are fundamental for process execution. A radiology
specialist, for example, may decide whether or not to sedate
a patient during an MRI examination.
Req. 2 - Intense use of forms: Like most healthcare
processes, the sketched scenario is characterized by a large
number of medical forms to be filled by authorized medical
staff (e.g., doctors, nurses, laboratory staff) with information
being relevant to patient treatment. As example consider the
information obtained when interviewing the patient about her
anamnesis.
Req. 3 - Interacting processes: The breast cancer diagno-
sis process needs to interact with other processes (e.g., MRI);
i.e., there are points in the diagnosis process where data from
the MRI process is needed. In particular, these processes
have synchronization points, where the further execution of
a particular process instance depends on the data produced
during the execution of one or several related instances.
Respective synchronization points do not only correspond to
one-to-one relationships; i.e., the execution of a particular
process instance may also depend on multiple instances
of another process type. In our example, the execution of
the diagnosis process depends on the results of various
examinations.

Req. 4 - Flexibility regarding process instantiation: Fig-
ure 1 also shows different cardinalities for the different pro-
cedures of the diagnosis process. These indicate whether or
not the execution of the respective procedures is mandatory
and whether they may be executed more than once. Manda-
tory procedures (e.g., Anamnesis, Patient Examination) have
cardinality 1, while optional ones (e.g., MRI, Mammogra-
phy, Blood Analysis, Tumor Biopsy) have cardinality 0...*.
The latter indicates that there are no restrictions regarding
the number of instances of respective optional procedures.
Based on the patient’s case, doctors may decide which of
these optional procedures shall be ordered and which not.
Moreover, it is possible to request them more than once.
Req. 5 - Authorized user access: To ensure privacy, it is
necessary that only authorized users may access patient data.
In our scenario, for example, the secretary of the radiology
department must not access information about the patient
obtained during the anamnesis and she must not register
symptoms of the patient. However, she may access the data
related to the request and the scheduling of a mammography
or an MRI examination. Besides, the permission to access
data often depends on the progress of the process, which
means that certain data should be only accessible at certain
points during process execution. For example, the medical
report of a mammography is accessible for the ordering
doctor only when the procedure is completed and the report
has been approved by the radiologist.
Req. 6 - Flexible data access: The system must provide
the flexibility to users to access and modify data at arbitrary
points during process execution. This is very important in
order to be able to react to unexpected events. For example,
in case of an emergency, the system must allow the doctor to
access examination data before the medical report becomes
available.

III. CASE STUDY: MODELING WITH
PHILHARMONICFLOWS

In the previous section, we introduced fundamental re-
quirements for adequately supporting healthcare processes.
These indicate that healthcare processes fulfill the major
characteristics of object-aware processes [31]:

1) Object behavior: The processing of individual object
instances must be coordinated between different users,
and valid attribute settings must be specified.

2) Object interactions: The behavior of individual objects
must be coordinated with the one of related objects.

3) Data-driven execution: The progress of a process in-
stance depends on business objects and their attribute
values.

4) Integrated access: Authorized users should be able to
access and manage process-related data objects at any
point in time.

5) Flexible activity execution: Activities should be exe-
cutable at different levels of granularity; e.g., it should



be possible that an activity may relate to one or to
multiple process instances.

PHILharmonicFlows has recognized the need to offer flex-
ible support for this kind of processes [28]. More precisely,
it provides a comprehensive framework with components
for both modeling and executing object-aware processes.
To be able to define these processes in tight integration
with data, the framework enforces a well-defined modeling
methodology that governs the definition of processes at
different levels of granularity. In this context, PHILharmon-
icFlows differentiates between micro processes and macro
processes capturing either the behavior of single objects or
the interactions among multiple objects.

The behavior of an object can be expressed by a number
of possible states. Whether or not a particular state is reached
depends on the values of object attributes. The interactions
among objects, in turn, are enabled when involved objects
reach certain states. Hence, object states serve as interface
between micro and macro processes.

As prerequisite for integrated access to data and processes,
a data model has to be defined. The latter enables the
definition of object types as well as their attributes and
relationships (including cardinalities) [30]. The data model
depicted in Figure 1, for example, gives an overview of the
object types being relevant in the context of our diagnosis
process; i.e., there is one object type for each of the phases
of the diagnosis process. Furthermore, Figure 5 illustrates
the attributes of object type Mammography.

In PHILharmonicFlows, for each object type defined by
the data model, one specific micro process type has to be
defined. At runtime, object instances of the same and of
different object types can be created at different points in
time. In this context, the creation of a new object instance
is directly coupled with the creation of a corresponding
micro process instance. A micro process type expresses the
behavior of the respective object type; i.e., it coordinates the
processing of an object among different users and specifies
what valid attribute settings are. Additionally, the cardinality
of an object type in relation to other object types defines
restrictions regarding the instantiation of micro process types
and object types respectively. For example, in our case the
cardinality of object type Anamnesis in relation to object
type Diagnosis is 1; i.e., there must be exactly one instance
of object type Anamnesis for each Diagnosis instance. By
contrast, it is not mandatory that there exists an instance
of object type Mammography for each Diagnosis instance.
However, it is up to the respective physician to initiate a
specific number of instances of this examination as long as
cardinality constraints are fulfilled. To meet Requirement 4
(cf. Section II), PHILharmonicFlows provides the flexibility
to handle a varying number of instances of interrelated
examinations. More precisely, it is up to the user to decide
when and which examinations are required. We will see
in the following, that using macro processes it becomes

possible to define sophisticated execution and instantiation
constraints in this context.

At micro process level, each micro process type comprises
a number of micro step types, which describe elementary
actions for reading and writing object attribute values. More
precisely, each micro step type is associated with one
particular attribute of the respective object type. Micro step
types, in turn, may be connected with each other using micro
transition types. To coordinate the processing of individual
object instances among different users, several micro step
types can be grouped into state types. The latter are then
associated with one or more user roles being responsible
to assign values to the required attributes. At runtime, a
micro step can be reached if for the corresponding attribute
a value is set. A state, in turn, can only be left if values
for all attributes associated with the micro steps of this
state are set. Whether or not the subsequent state in the
micro process is immediately activated then may also depend
on user decisions. For this purpose, micro transition types
connecting micro step types belonging to different state
types can either be categorized as implicit or explicit. Using
implicit micro transitions, the target state is automatically
activated as soon as all attribute values required by the
previous state become available. Explicit micro transitions,
in turn, additionally require a user commitment; i.e., users
may decide whether or not the subsequent state should
be activated. This way, users are enabled to still change
corresponding attribute values even if all attribute values
required to leave the state have been already set.

An example of a micro process type is illustrated in
Figure 4. Object type Mammography and its respective
micro process type are instantiated when the doctor orders
a new Mammography examination. In order to request a
Mammography, the (authorized) user must set the order
date; i.e., to complete micro step order date a value needs to
be assigned to the corresponding attribute. In our example,
the micro transition type between state types requested
and scheduled is explicit (dotted line). This ensures that
the doctor may still review the examination request before
sending it to the secretary of the radiology department. In
state scheduled, in turn, the Secretary must fill attributes
scheduled date, scheduled doctor and scheduled room. She
further has to decide when to notify the patient about the
scheduled appointment; i.e., the next state patient notified
will only be activated when explicitly being confirmed by
the Secretary.

A user decision, in turn, is required if a micro step type
has more than one outgoing micro transition types. In this
case, the responsible user has to decide which subsequent
state shall be activated. Figure 3 shows a fragment of the
MRI micro process type, where the radiology specialist must
decide, in case of a patient’s anxiety scenario, whether or
not to sedate the patient. As we can observe in this example,
the dotted lines indicate explicit micro transitions.



Figure 3. Partial view of the MRI micro process type

To enable coordination, user roles have to be assigned to
the different states of a micro process type. Based on these
role assignments, a corresponding authorization table is
automatically generated for each object type. More precisely,
PHILharmonicFlows grants different permissions for reading
and writing attribute values as well as for creating and
deleting object instances to different user roles. In this
context, the different states are considered as well; i.e.,
users may have different permissions in different states.
The right to write an attribute can either be mandatory or
optional. When initially generating the authorization table,
the user role associated to a state type automatically receives
mandatory write authorization for all attributes related to any
micro step type of the respective state type. Optional data
access may be additionally granted to user roles not being
associated to the state type. This way, users currently not
being involved in process execution are enabled to access
process relevant data if desired.

Based on the authorization table, PHILharmonicFlows
also automatically generates user forms. Which input fields
are displayed to the respective user depends on the permis-
sions he has in the currently activated state. If he only has
the permission to read an attribute in a particular state, the
form field will not be editable and be marked as read-only. A
mandatory or optional attribute, in turn, is associated with an
editable field. In particular, mandatory fields are highlighted
in the respective form.

The concepts provided by PHILharmonicFlows to enable
data authorization for micro process types are exempli-
fied in Figure 5. It illustrates the authorization table of
micro process type Mammography. In this example, state
type requested has only one mandatory attribute order date
(marked as MW in the authorization table). This attribute has
to be set by the physician requesting the examination. In ad-
dition, attributes order desired date and order observations
are optional (marked as OW). In state scheduled, the same
physician may change the values of the aforementioned
optional attributes, as opposed to the secretary of the ra-
diology department. The latter may only read the values

of these attributes (marked as R). However, she is allowed
to write attributes scheduled date, scheduled doctor and
scheduled room, which, in turn, may only be read by the
doctor.

Whether or not subsequent object states can be reached
may not only depend on object attributes, but also on the
states of other micro process instances. At runtime, for each
object instance one corresponding micro process instance ex-
ists. As a consequence, a healthcare scenario may comprise
dozens up to hundreds of micro process instances. Taking
their various interdependencies into account, we obtain a
complex process structure. In order to enable the interac-
tion between these micro process instances, a coordination
mechanism is required to specify the interaction points of the
processes involved. For this purpose, PHILharmonicFlows
automatically derives a state-based view for each micro
process type. This view is then used for modeling macro
process types. A macro process type refers to parts of
the data structure and consists of both macro step types
and macro transitions types between the latter. As opposed
to traditional process modeling approaches, where process
steps are defined in terms of black-box activities, a macro
step type always refers to an object type together with a
corresponding state type. The macro process type resulting
for our example from Figure 6 illustrates this. The process
begins with the instantiation of object type Diagnosis, which
triggers the initiation of its micro process. Then, object
type Anamnesis is instantiated (i.e., the responsible doctor
receives a corresponding item in his worklist) and its micro
process instance is initialized. During Patient Examination, it
is possible to have the symptoms collected, which are then
confirmed after the physical examination has taken place.
If the symptoms are not confirmed, the diagnosis will be
finished as negative, indicating that no tumor was found.
Otherwise, the diagnosis process continues with requesting
imaging encounters. It is important to note that for one
primary examination, there may be more than one symptom
collected.



Figure 4. Mammography micro process type

Figure 5. Authorization table and forms of the Mammography micro process type

Since the activation of a particular state may depend on
instances of different micro process types, macro input types
are assigned to macro step types. The latter can then be
associated with several macro transitions. To differentiate
between AND and OR semantics in this context, it is
additionally possible to model more than one macro input for
each macro step type. At runtime, a macro step is enabled if
at least one of its macro inputs becomes activated. A macro
input, in turn, is enabled if all incoming macro transitions
are triggered.

To take the dynamically evolving number of object in-
stances as well as the asynchronous execution of correspond-
ing micro process instances into account, for each macro

transition a corresponding coordination component needs to
be defined. For this purpose, PHILharmonicFlows takes the
relationship between the object type of the source macro step
type and the one of the target macro step type into account.
To cover this, the framework automatically structures the
data model into different data levels. All object types not
referring to any other object type are placed on the top level
(Level #1). Generally, any other object type is always as-
signed to a lower data level as the object types it references.
As illustrated in Figure 7, in our case study, object type
Diagnosis is at the top level, while all the examinations
are placed at a lower level. For example, images refer to
respective examinations (i.e., imaging encounters). Hence,



Figure 6. A macro process type coordinating the interactions among the different micro process types

they are placed at Level #3. In this paper, we do not discuss
self-references and cyclic relations, but they are considered
by PHILharmonicFlows framework.

Figure 7. Different kinds of relationships between object types

By organizing the object types of the data model into
different levels, PHILharmonicFlows automatically catego-
rizes macro transitions either as top-down or as bottom-up
(cf. Figure 7). Furthermore, if the object types of the source
and sink macro state refer to a common higher-level object
type, the macro transition is categorized as transverse. For
macro transitions types connecting macro step types that
refer to the same object type no coordination component is
needed. These transitions are denoted as self-transitions. For
all other ones, the coordination component required depends
on the type of the respective macro transition. A top-down
transition characterizes the interaction from an upper-level
object type to a lower-level one. Here, the execution of
a varying number of micro process instances depends on
one higher-level micro process instance. In this context,

a so called process context type must be assigned to the
respective macro transition type. Due to lack of space, we
do not go into details. We also do not discuss transverse
macro transition types here. A bottom-up transition, in turn,
characterizes an interaction from a lower-level object type
to an upper-level one. In this case, the execution of one
higher-level micro process instance depends on the execution
of several lower-level micro process instances of the same
type. For this reason, each bottom-up transition requires an
aggregation component for coordination. For this purpose,
PHILharmonicFlows provides counters managing the total
number of lower-level micro process instances and the
number of micro process instances for which the state corre-
sponding to the source macro step type is currently activated.
To enable asynchronous execution, additional counters for
reflecting the number of micro process instances currently
being before or after the respective state or being skipped
are provided. These counters can be used for defining ag-
gregation conditions enabling the higher-level micro process
instance to activate the state. As illustrated in Figure 8,
the Diagnosis process is finished in state negative if no
Symptoms is confirmed. The aggregation condition for this
case (#IN=#ALL) indicates that all micro process instances of
object type Symptom must reach state not confirmed in order
to activate the state unconfirmed from the respective instance
of micro process type Diagnosis. In this example, we illus-
trate how such counters work. As illustrated in Figure 8,
there are three micro process instances of Symptom related
to one micro process instance of Diagnosis. In this example,
the counter indicates that two of the running instances of
symptom have already reached state not confirmed (#IN=2),
while instance has not yet reached this state (#BEFORE=1).
When all three instances reach this state (i.e., the condition



defined in the aggregation is met), state unconfirmed is
activated at the respective Diagnosis instance.

Figure 8. Aggregation example

The runtime environment provides data- as well as
process-oriented views to end-users. In particular, authorized
users may invoke activities for accessing data at any point
in time as well as activities needed in order to proceed with
the execution of micro process instances. In this context,
the formal operational semantics of PHILharmonicFlows en-
ables a well-defined execution logic and additionally enables
us to automatically generate most end-user components of
the runtime environment (e.g., tables giving an overview on
object instances, user worklists, and form-based activities).

Insights into the operational semantics provided by PHIL-
harmonicFlows can be found in [30].

IV. DISCUSSION

In Section II, we have introduced a healthcare scenario,
which we have then modeled in Section III using the
PHILharmonicFlows framework. In this section, we discuss
how the requirements posed by the healthcare scenario are
covered.
Req. 1 - Data and process integration: The well defined
modeling methodology of PHILharmonicFlows ensures that
each procedure (e.g., anamnesis, primary examination, mam-
mography, etc.) is modeled from a data-oriented perspective
(i.e., by using object types) as well as from a process-
oriented one (i.e., by using micro process types). Hence,
all the data produced by such procedures is stored and
managed without need to access external databases during
the execution of black-box activities. This also enables users
to access and manage process-related object instances at any
point in time (assuming proper authorization) and not only
in the context of upcoming mandatory activities.

Req. 2 - Intense use of forms: Based on authorization
tables, PHILharmonicFlows automatically generates user
forms. For this purpose, it takes the currently activated state
of a micro process instance as well as the user and his data
access permissions into account. Each form comprises fields
corresponding to read and write permissions of respective at-
tributes. Moreover, in PHILharmonicFlows, object instances
and activities are not strictly linked with each other. For
example, it is also possible to execute a particular form
in relation to a collection of object instances of the same
object type. Here, entered attribute values are assigned to
all selected object instances in one go. In addition, a user
may invoke additional object instances of different (related)
types. When generating corresponding forms, the currently
activated states of these instances as well as the permissions
assigned to the respective user in these states are taken into
account.
Req. 3 - Interacting processes: As discussed in Section
III, this requirement is met by PHILharmonicFlows using
the macro process component. Using macro step types it be-
comes possible to define the required synchronization points.
At runtime, it is possible to execute the individual micro
process instances asynchronously to each other as well as
asynchronously to the micro process instances of other types.
In addition, it is possible to instantiate them at different
points in time. Consequently, the resulting process structure
comprises a varying number of interrelated micro process
instances being in different execution states. For this reason,
each macro transition type can be further specialized using
different coordination components. The choice of the latter
depends on the relation between the corresponding object
types within the overall data structure. This way, not only the
asynchronous execution but also the different cardinalities
between different sets of dependent micro process instances
are considered.
Req. 4 - Flexibility regarding process instantiation: Us-
ing PHILharmonicFlows it becomes possible to consider a
dynamic number of inter-related micro process instances.
Taking the defined cardinality constraints into account, users
can freely decide which and how many micro process
instances shall be created. If the minimum cardinality is
not met, PHILharmonicFlows automatically assigns a corre-
sponding mandatory activity to the worklists of responsible
users demanding the creation of new instances of the respec-
tive micro process type. Opposed to this, if the maximum
cardinality is reached, PHILharmonicFlows prohibits the
creation of additional micro process instances. By specifying
the cardinality of each object type, it is possible to define
which of them must be instantiated (cardinality 1) and which
ones are optional (cardinality 0...). This enables qualified
staff members to request examinations at arbitrary points of
the diagnosis process and to react on unexpected events (e.g.,
drug prescription in case of intense fever).
Req. 5 - Authorized user access: The authorization table



enables the level of data privacy required by healthcare
processes. For each micro process type, it is possible to
define which attributes can be written or read by a particular
user (role) according to the currently activated micro process
state. PHILharmonicFlows ensures that no data is written or
read by unauthorized users. Since each state type has one
user role associated to it, the authorization table automati-
cally ensures that this same role owns the corresponding data
permissions; i.e., the role has mandatory write permission to
the attributes associated with the micro step types, which
belong, in turn, to the state type.
Req. 6 - Flexible data access: As opposed to traditional
PrMS, PHILharmonicFlows presents two different views
to the end-users: a process-oriented (i.e., worklists) and a
data-oriented (i.e., overview tables listing individual object
instances together with their attribute values). The latter
enables the access to data at any point in time by authorized
users. Thus, data access does not depend on the activation of
an upcoming activity; i.e., the data can be accessed beyond
the context of a particular mandatory activity.

V. RELATED WORK

Healthcare is a challenging domain for process support,
since it comprises structured and unstructured processes
whose support requires a high degree of flexibility. There
are many researchers showing interest in this area [11],
[23]. The case-handling paradigm focuses on administrative
processes and, like PHILharmonicFlows, aims at data and
process integration by managing the data inside the “case”
scope and by enabling form-based activities. It also intends
to increase the degree of flexibility by providing access to
information outside the context of an activity. However, data
is only provided in terms of atomic elements and can be read
by all users involved in the case. Furthermore, there is no
full support regarding interactions among different cases.

Interactions among process fragments, in turn, are sup-
ported by the Proclets approach [1], [9]. However, data
is managed outside the scope of the process management
system and can only be accessed when an activity is being
executed.

The document-based workflow approach α-flow [21],
[22] incorporates workflow semantics into the documents
involved. Such documents are edited and viewed taking the
separation of responsibilities and inter-institutional collabo-
ration into account.

For more details about existing data-aware process man-
agement approaches, we refer readers to [31].

VI. SUMMARY & OUTLOOK

We analyzed a breast cancer diagnosis scenario. By mod-
eling it with PHILharmonicFlows we studied how effectively
this framework covers the semantics of healthcare processes.
First, we elicited a list of requirements not adequately met
by traditional process management systems in this context.

Following this, we modeled the considered scenario by using
components of the PHILharmonicFlows framework. Finally,
we discussed the effectiveness of this approach and showed
how it covers the requirements of healthcare processes.

Healthcare processes are knowledge-intensive and need
a high level of flexibility in order to allow qualified staff
members to flexibly react to unexpected events. Com-
pared to other data-oriented approaches, in a very effective
way PHILharmonicFlows covers the requirements posed
by healthcare processes. By tightly integrating data and
processes, our approach enables an environment where data
drives the process and permits a higher degree of flexibility
allowing data access outside the context of black-box ac-
tivities as well. Furthermore, the distinction between two
levels of granularity permits the interaction of processes
being executed independently. It further enables flexibility
by allowing users to decide which processes to instantiate
when.

Like in activity-centered approaches [32], schema evolu-
tion is a complex and error-prone task to be accomplished
for object-aware processes as well. We are working on an
extension of the framework to support it; i.e., a mechanism
to manage and to apply changes in object-aware processes as
well as their running instances. Since all components of the
framework are tightly integrated, the mechanism must take
into account that each change operation may affect more
than one component, causing a cascading effect. Thus, the
mechanism must be able to detect such interdependencies
between components and to assist the user to apply the
changes in the process without affecting correctness and
compliance.

ACKNOWLEDGMENT

The authors would like to acknowledge financial support
provided by the Deutscher Akademischer Austausch Dienst
(DAAD).

REFERENCES

[1] R. S. Mans, N. C. Russell, W. M. P. van der Aalst, A. J. Mole-
man, and P. J. M. Bakker, Proclets in Healthcare, Eindhoven:
BPM Center, 36, 2009.

[2] M. Reichert, What BPM Technology Can Do for Healthcare
Process Support, Proc. 13th Conf. on Artificial Intelligence in
Medicine (AIME’11), LNAI 6747, 2–13, 2011.

[3] R. Lenz and M. Reichert, IT Support for Healthcare Processes
– Premises, Challenges, Perspectives, Data & Knowledge
Engineering, 61(1), 39–58, 2007.

[4] P. Dadam, M. Reichert, and K. Klaus, Clinical Workflows -
The Killer Application for Process-oriented Information Sys-
tems?, Proc. 4th Int’l Conf. on Business Information Systems
(BIS’00), 36–59, 2000.

[5] Object Management Group, Business Process Model and No-
tation (BPMN), version 2.0, January 2011, http://www.omg.
org/spec/BPMN/2.0, 2011.



[6] M. Juric, Business Process Execution Language for Web Ser-
vices BPEL and BPEL4WS 2nd Edition, Packt Publishing,
2006.

[7] D. Cohn and R. Hull, Business Artifacts: A Data-centric
Approach to Modeling Business Operations and Processes,
IEEE Data Engineering Bull., 32(3), 3–9, 2009.

[8] M. Reichert and P. Dadam, A Framework for Dynamic Changes
in Workflow Management Systems, Proc. 8th Int’l Workshop on
Database and Expert Systems Applications (DEXA’97), 42–48,
1997.

[9] W. M. P. van der Aalst, P. Barthelmess, C. Ellis, and J. Wainer,
Workflow Modeling Using Proclets, Proc. 5th Int’l Conf. on
Cooperative Information Systems (CoopIS’00), LNCS 1901,
198–209, 2000.

[10] W. M. P. van der Aalst and K. van Hee, Workflow Manage-
ment: Models, Methods, and Systems, MIT Press, 2004.

[11] W. M. P. van der Aalst, M. Weske, and D. Grünbauer, Case
Handling: A New Paradigm for Business Process Support, Data
& Knowledge Engineering, 53(2), 129–162, 2005.

[12] B. Mutschler, B. Weber, and M. Reichert, Workflow Man-
agement versus Case Handling: Results from a Controlled
Software Experiment, Proc. 23rd Annual ACM Symposium on
Applied Computing (SAC’08), 82–89, 2008.

[13] C. Guenther, M. Reichert, and W. M. P. van der Aalst,
Supporting Flexible Processes with Adaptive Workflow and
Case Handling, Proc. 3rd. IEEE Workshop on Agile Coopera-
tive Process-aware Information Systems (ProGility’08), IEEE
Computer Society Press, 229–234, 2008.

[14] K. Bhattacharya, R. Hull, and J. Su, A Data-Centric Design
Methodology for Business Processes, Handbook of Research
on Business Process Management, 503–531, 2009.

[15] R. Liu, K. Bhattacharya, and F. Y. Wu, Modeling Business
Contexture and Behavior Using Business Artifact, Proc. 19th
Int’l Conf. on Advanced Information Systems Engineering
(CAiSE’07), LNCS 4495, 324-339, 2007.

[16] D. Müller, M. Reichert, and J. Herbst, Data-Driven Modeling
and Coordination of Large Process Structures, Proc. 19th
Int’l. Conf. on Cooperative Information Systems (CoopIS’07),
LNCS 4803, 131–149, 2007.

[17] D. Müller, M. Reichert, and J. Herbst, A New Paradigm for the
Enactment and Dynamic Adaptation of Data-driven Process
Structures, Proc. 20th Int’l Conf. on Advanced Information
Systems Engineering (CAiSE’08), LNCS 5074, 48–63, 2008.

[18] S. Rinderle and M. Reichert, Data-Driven Process Control
and Exception Handling in Process Management Systems,
Proc. 18th Int’l Conf. on Advanced Information Systems
Engineering (CAiSE’06), LNCS 4001, 273–287, 2006.

[19] G. M. Redding, M. Dumas, A. Hofstede, and A. Iordachescu,
A Flexible, Object-centric Approach for Business Process
Modeling, Proc. IEEE Int’l Conf. on Service-Oriented Com-
puting and Applications (SOCA), 1–11, 2009.

[20] I. Vanderfeesten, H. A. Reijers, and W. M. P. van der Aalst,
Product-Based Workflow Support: Dynamic Workflow Exe-
cution, Proc. Int’l Conf. on Advanced Information Systems
Engineering (CAiSE’08), LNCS 5074, pp. 571–574, 2008.

[21] C. P. Neumann and R. Lenz, alpha-Flow: A Document-based
Approach to Inter-Institutional Process Support in Healthcare,
Proc. 3rd. Int’l Workshop on Process-oriented Information
Systems in Healthcare (ProHealth 2009), LNBIP 43, 569–580,
2009.

[22] C. P. Neumann and R. Lenz, The alpha-Flow Use-Case
of Breast Cancer Treatment – Modeling Inter-Institutional
Healthcare Workflows by Active Documents, Proc. IEEE Int’l
Workshops on Enabling Technologies: Infrastructures for Col-
laborative Enterprises (WETICE-2010), 17–22, 2010.

[23] N. Mulyar, M. Pesic, W. M. P. van der Aalst, and M. Peleg,
Declarative and Procedural Approaches for Modelling Clinical
Guidelines: Addressing Flexibility Issues, Proc. 1st Int’l Work-
shop on Process-oriented Information Systems in Healthcare
(ProHealth 2007), LNCS 4928, 335–346, 2007.

[24] B. Silver, Case Management: Addressing Unique BPM Re-
quirements, BPMS Watch, 1–12, 2009.

[25] N. Gronau and E. Weber, Management of Knowledge Inten-
sive Business Processes, Proc. 2nd Int’l Conf. on Business
Process Management (BPM’04), LNCS 3080, 163–178, 2004.

[26] V. Künzle and M. Reichert, Towards Object-aware Process
Management Systems: Issues, Challenges and Benefits, Proc.
10th Int’l Workshop on Business Process Modeling, Develop-
ment, and Support (BPMDS’09), LNBIP 29, 197–210, 2009.

[27] V. Künzle and M. Reichert, Integrating Users in Object-aware
Process Management Systems: Issues and Challenges, Proc.
5th Int’l Workshop on Business Process Design (BDP’09),
LNBIP 43, 29–41, 2009.

[28] V. Künzle and M. Reichert, PHILharmonicFlows: Towards a
Framework for Object-aware Process Management, Journal of
Software Maintenance and Evolution: Research and Practice,
23(4), 205–244, 2011.

[29] V. Künzle, B. Weber, and M. Reichert, Object-aware Busi-
ness Processes: Fundamental Requirements and their Support
in Existing Approaches, Int’l Journal of Information System
Modeling and Design, 2(2), 19–46, 2011.

[30] V. Künzle and M. Reichert, A Modeling Paradigm for Inte-
grating Processes and Data at the Micro Level, Proc. 12th Int’l
Working Conf. on Business Process Modeling, Development
and Support (BPMDS’11), LNBIP 81, 201–215, 2011.

[31] V. Künzle and M. Reichert, Striving for Object-aware Process
Support: How Existing Approaches Fit Together, Proc. 1st Int’l
Symposium on Data-driven Process Discovery and Analysis
(SIMPDA’11), 2011.

[32] M. Reichert, S. Rinderle-Ma, and P. Dadam, Flexibility in
Process-aware Information Systems, LNCS Transactions on
Petri Nets and Other Models of Concurrency (ToPNoC) 2,
LNCS 5460, 115–135.


